Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin.

Identifieur interne : 000727 ( Main/Exploration ); précédent : 000726; suivant : 000728

Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin.

Auteurs : Allison M. Veach [États-Unis] ; Reese Morris [États-Unis] ; Daniel Z. Yip [États-Unis] ; Zamin K. Yang [États-Unis] ; Nancy L. Engle [États-Unis] ; Melissa A. Cregger [États-Unis] ; Timothy J. Tschaplinski [États-Unis] ; Christopher W. Schadt [États-Unis]

Source :

RBID : pubmed:31103040

Descripteurs français

English descriptors

Abstract

BACKGROUND

Plants have developed defense strategies for phytopathogen and herbivore protection via coordinated metabolic mechanisms. Low-molecular weight metabolites produced within plant tissues, such as salicylic acid, represent one such mechanism which likely mediates plant - microbe interactions above and below ground. Salicylic acid is a ubiquitous phytohormone at low levels in most plants, yet are concentrated defense compounds in Populus, likely acting as a selective filter for rhizosphere microbiomes. We propagated twelve Populus trichocarpa genotypes which varied an order of magnitude in salicylic acid (SA)-related secondary metabolites, in contrasting soils from two different origins. After four months of growth, plant properties (leaf growth, chlorophyll content, and net photosynthetic rate) and plant root metabolomics specifically targeting SA metabolites were measured via GC-MS. In addition, rhizosphere microbiome composition was measured via Illumina MiSeq sequencing of 16S and ITS2 rRNA-genes.

RESULTS

Soil origin was the primary filter causing divergence in bacterial/archaeal and fungal communities with plant genotype secondarily influential. Both bacterial/archaeal and fungal evenness varied between soil origins and bacterial/archaeal diversity and evenness correlated with at least one SA metabolite (diversity: populin; evenness: total phenolics). The production of individual salicylic acid derivatives that varied by host genotype resulted in compositional differences for bacteria /archaea (tremuloidin) and fungi (salicylic acid) within one soil origin (Clatskanie) whereas soils from Corvallis did not illicit microbial compositional changes due to salicylic acid derivatives. Several dominant bacterial (e.g., Betaproteobacteria, Acidobacteria, Verrucomicrobia, Chloroflexi, Gemmatimonadete, Firmicutes) and one fungal phyla (Mortierellomycota) also correlated with specific SA secondary metabolites; bacterial phyla exhibited more negative interactions (declining abundance with increasing metabolite concentration) than positive interactions.

CONCLUSIONS

These results indicate microbial communities diverge most among soil origin. However, within a soil origin, bacterial/archaeal communities are responsive to plant SA production within greenhouse-based rhizosphere microbiomes. Fungal microbiomes are impacted by root SA-metabolites, but overall to a lesser degree within this experimental context. These results suggest plant defense strategies, such as SA and its secondary metabolites, may partially drive patterns of both bacterial/archaeal and fungal taxa-specific colonization and assembly.


DOI: 10.1186/s40168-019-0668-8
PubMed: 31103040
PubMed Central: PMC6525979


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin.</title>
<author>
<name sortKey="Veach, Allison M" sort="Veach, Allison M" uniqKey="Veach A" first="Allison M" last="Veach">Allison M. Veach</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morris, Reese" sort="Morris, Reese" uniqKey="Morris R" first="Reese" last="Morris">Reese Morris</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yip, Daniel Z" sort="Yip, Daniel Z" uniqKey="Yip D" first="Daniel Z" last="Yip">Daniel Z. Yip</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Zamin K" sort="Yang, Zamin K" uniqKey="Yang Z" first="Zamin K" last="Yang">Zamin K. Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Engle, Nancy L" sort="Engle, Nancy L" uniqKey="Engle N" first="Nancy L" last="Engle">Nancy L. Engle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cregger, Melissa A" sort="Cregger, Melissa A" uniqKey="Cregger M" first="Melissa A" last="Cregger">Melissa A. Cregger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tschaplinski, Timothy J" sort="Tschaplinski, Timothy J" uniqKey="Tschaplinski T" first="Timothy J" last="Tschaplinski">Timothy J. Tschaplinski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schadt, Christopher W" sort="Schadt, Christopher W" uniqKey="Schadt C" first="Christopher W" last="Schadt">Christopher W. Schadt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA. schadtcw@ornl.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA. schadtcw@ornl.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Tennessee, Knoxville, TN, 37996</wicri:regionArea>
<wicri:noRegion>37996</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31103040</idno>
<idno type="pmid">31103040</idno>
<idno type="doi">10.1186/s40168-019-0668-8</idno>
<idno type="pmc">PMC6525979</idno>
<idno type="wicri:Area/Main/Corpus">000899</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000899</idno>
<idno type="wicri:Area/Main/Curation">000899</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000899</idno>
<idno type="wicri:Area/Main/Exploration">000899</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin.</title>
<author>
<name sortKey="Veach, Allison M" sort="Veach, Allison M" uniqKey="Veach A" first="Allison M" last="Veach">Allison M. Veach</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morris, Reese" sort="Morris, Reese" uniqKey="Morris R" first="Reese" last="Morris">Reese Morris</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yip, Daniel Z" sort="Yip, Daniel Z" uniqKey="Yip D" first="Daniel Z" last="Yip">Daniel Z. Yip</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Zamin K" sort="Yang, Zamin K" uniqKey="Yang Z" first="Zamin K" last="Yang">Zamin K. Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Engle, Nancy L" sort="Engle, Nancy L" uniqKey="Engle N" first="Nancy L" last="Engle">Nancy L. Engle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cregger, Melissa A" sort="Cregger, Melissa A" uniqKey="Cregger M" first="Melissa A" last="Cregger">Melissa A. Cregger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tschaplinski, Timothy J" sort="Tschaplinski, Timothy J" uniqKey="Tschaplinski T" first="Timothy J" last="Tschaplinski">Timothy J. Tschaplinski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schadt, Christopher W" sort="Schadt, Christopher W" uniqKey="Schadt C" first="Christopher W" last="Schadt">Christopher W. Schadt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA. schadtcw@ornl.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038</wicri:regionArea>
<wicri:noRegion>37831-6038</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA. schadtcw@ornl.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Tennessee, Knoxville, TN, 37996</wicri:regionArea>
<wicri:noRegion>37996</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbiome</title>
<idno type="eISSN">2049-2618</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Archaea (classification)</term>
<term>Bacteria (classification)</term>
<term>Fungi (classification)</term>
<term>Genotype (MeSH)</term>
<term>Metabolomics (MeSH)</term>
<term>Microbiota (MeSH)</term>
<term>Plant Roots (microbiology)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
<term>Rhizosphere (MeSH)</term>
<term>Salicylic Acid (metabolism)</term>
<term>Secondary Metabolism (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN ribosomique 16S (génétique)</term>
<term>Acide salicylique (métabolisme)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Archéobactéries (classification)</term>
<term>Bactéries (classification)</term>
<term>Champignons (classification)</term>
<term>Génotype (MeSH)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Microbiote (MeSH)</term>
<term>Métabolisme secondaire (MeSH)</term>
<term>Métabolomique (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
<term>Racines de plante (microbiologie)</term>
<term>Rhizosphère (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Archaea</term>
<term>Bacteria</term>
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN ribosomique 16S</term>
<term>Archéobactéries</term>
<term>Bactéries</term>
<term>Champignons</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
<term>Salicylic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide salicylique</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genotype</term>
<term>Metabolomics</term>
<term>Microbiota</term>
<term>Rhizosphere</term>
<term>Secondary Metabolism</term>
<term>Sequence Analysis, DNA</term>
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Génotype</term>
<term>Microbiologie du sol</term>
<term>Microbiote</term>
<term>Métabolisme secondaire</term>
<term>Métabolomique</term>
<term>Rhizosphère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Plants have developed defense strategies for phytopathogen and herbivore protection via coordinated metabolic mechanisms. Low-molecular weight metabolites produced within plant tissues, such as salicylic acid, represent one such mechanism which likely mediates plant - microbe interactions above and below ground. Salicylic acid is a ubiquitous phytohormone at low levels in most plants, yet are concentrated defense compounds in Populus, likely acting as a selective filter for rhizosphere microbiomes. We propagated twelve Populus trichocarpa genotypes which varied an order of magnitude in salicylic acid (SA)-related secondary metabolites, in contrasting soils from two different origins. After four months of growth, plant properties (leaf growth, chlorophyll content, and net photosynthetic rate) and plant root metabolomics specifically targeting SA metabolites were measured via GC-MS. In addition, rhizosphere microbiome composition was measured via Illumina MiSeq sequencing of 16S and ITS2 rRNA-genes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Soil origin was the primary filter causing divergence in bacterial/archaeal and fungal communities with plant genotype secondarily influential. Both bacterial/archaeal and fungal evenness varied between soil origins and bacterial/archaeal diversity and evenness correlated with at least one SA metabolite (diversity: populin; evenness: total phenolics). The production of individual salicylic acid derivatives that varied by host genotype resulted in compositional differences for bacteria /archaea (tremuloidin) and fungi (salicylic acid) within one soil origin (Clatskanie) whereas soils from Corvallis did not illicit microbial compositional changes due to salicylic acid derivatives. Several dominant bacterial (e.g., Betaproteobacteria, Acidobacteria, Verrucomicrobia, Chloroflexi, Gemmatimonadete, Firmicutes) and one fungal phyla (Mortierellomycota) also correlated with specific SA secondary metabolites; bacterial phyla exhibited more negative interactions (declining abundance with increasing metabolite concentration) than positive interactions.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>These results indicate microbial communities diverge most among soil origin. However, within a soil origin, bacterial/archaeal communities are responsive to plant SA production within greenhouse-based rhizosphere microbiomes. Fungal microbiomes are impacted by root SA-metabolites, but overall to a lesser degree within this experimental context. These results suggest plant defense strategies, such as SA and its secondary metabolites, may partially drive patterns of both bacterial/archaeal and fungal taxa-specific colonization and assembly.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31103040</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2049-2618</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>05</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Microbiome</Title>
<ISOAbbreviation>Microbiome</ISOAbbreviation>
</Journal>
<ArticleTitle>Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin.</ArticleTitle>
<Pagination>
<MedlinePgn>76</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s40168-019-0668-8</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Plants have developed defense strategies for phytopathogen and herbivore protection via coordinated metabolic mechanisms. Low-molecular weight metabolites produced within plant tissues, such as salicylic acid, represent one such mechanism which likely mediates plant - microbe interactions above and below ground. Salicylic acid is a ubiquitous phytohormone at low levels in most plants, yet are concentrated defense compounds in Populus, likely acting as a selective filter for rhizosphere microbiomes. We propagated twelve Populus trichocarpa genotypes which varied an order of magnitude in salicylic acid (SA)-related secondary metabolites, in contrasting soils from two different origins. After four months of growth, plant properties (leaf growth, chlorophyll content, and net photosynthetic rate) and plant root metabolomics specifically targeting SA metabolites were measured via GC-MS. In addition, rhizosphere microbiome composition was measured via Illumina MiSeq sequencing of 16S and ITS2 rRNA-genes.</AbstractText>
<AbstractText Label="RESULTS">Soil origin was the primary filter causing divergence in bacterial/archaeal and fungal communities with plant genotype secondarily influential. Both bacterial/archaeal and fungal evenness varied between soil origins and bacterial/archaeal diversity and evenness correlated with at least one SA metabolite (diversity: populin; evenness: total phenolics). The production of individual salicylic acid derivatives that varied by host genotype resulted in compositional differences for bacteria /archaea (tremuloidin) and fungi (salicylic acid) within one soil origin (Clatskanie) whereas soils from Corvallis did not illicit microbial compositional changes due to salicylic acid derivatives. Several dominant bacterial (e.g., Betaproteobacteria, Acidobacteria, Verrucomicrobia, Chloroflexi, Gemmatimonadete, Firmicutes) and one fungal phyla (Mortierellomycota) also correlated with specific SA secondary metabolites; bacterial phyla exhibited more negative interactions (declining abundance with increasing metabolite concentration) than positive interactions.</AbstractText>
<AbstractText Label="CONCLUSIONS">These results indicate microbial communities diverge most among soil origin. However, within a soil origin, bacterial/archaeal communities are responsive to plant SA production within greenhouse-based rhizosphere microbiomes. Fungal microbiomes are impacted by root SA-metabolites, but overall to a lesser degree within this experimental context. These results suggest plant defense strategies, such as SA and its secondary metabolites, may partially drive patterns of both bacterial/archaeal and fungal taxa-specific colonization and assembly.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Veach</LastName>
<ForeName>Allison M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morris</LastName>
<ForeName>Reese</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yip</LastName>
<ForeName>Daniel Z</ForeName>
<Initials>DZ</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Zamin K</ForeName>
<Initials>ZK</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Engle</LastName>
<ForeName>Nancy L</ForeName>
<Initials>NL</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cregger</LastName>
<ForeName>Melissa A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tschaplinski</LastName>
<ForeName>Timothy J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schadt</LastName>
<ForeName>Christopher W</ForeName>
<Initials>CW</Initials>
<Identifier Source="ORCID">0000-0001-8759-2448</Identifier>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA. schadtcw@ornl.gov.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA. schadtcw@ornl.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microbiome</MedlineTA>
<NlmUniqueID>101615147</NlmUniqueID>
<ISSNLinking>2049-2618</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O414PZ4LPZ</RegistryNumber>
<NameOfSubstance UI="D020156">Salicylic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001105" MajorTopicYN="N">Archaea</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055432" MajorTopicYN="N">Metabolomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="Y">Microbiota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="Y">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020156" MajorTopicYN="N">Salicylic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064210" MajorTopicYN="N">Secondary Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">16S rRNA</Keyword>
<Keyword MajorTopicYN="Y">ITS2</Keyword>
<Keyword MajorTopicYN="Y">Metabolomics</Keyword>
<Keyword MajorTopicYN="Y">Populus trichocarpa</Keyword>
<Keyword MajorTopicYN="Y">Rhizosphere</Keyword>
<Keyword MajorTopicYN="Y">Salicylic acid</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31103040</ArticleId>
<ArticleId IdType="doi">10.1186/s40168-019-0668-8</ArticleId>
<ArticleId IdType="pii">10.1186/s40168-019-0668-8</ArticleId>
<ArticleId IdType="pmc">PMC6525979</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2014 Jan 23;5:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24478784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jun 30;6:462</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26175738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Mar;74(5):1620-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18192411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Jul;23(13):3356-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24894495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jun;62(10):3321-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21357767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 15;27(16):2194-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21700674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Jul;32(7):1415-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16724272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Aug 21;349(6250):860-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26184915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Oct;10(5):466-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17904410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Nov 16;250(4983):1002-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17746925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Dec;20(12):1512-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17990959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Nov;32(11):1357-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23065191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2018 Feb 12;6(1):31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29433554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Apr;24(4):395-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21171889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jun;123(2):487-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10859179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Nov 15;8:2224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29187837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Jul 12;7:12151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27402057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Mar;6(3):610-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22134646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 16;8(10):e76382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24146861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2018 Jul;76(1):156-168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29204781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 Aug;65(2):323-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18547325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Oct 07;14:265</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25287590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Jun;108(2):633-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2001 Aug;21(12-13):941-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11498341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2018 Apr;3(4):470-480</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29556109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2004 Jul;48(1):41-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15085298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 2;488(7409):91-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Mar;89(3):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18459340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2015 Jan;41(1):75-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25475786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Aug;17(8):478-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22564542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jul;25(7):2714-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23903318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 May 9;92(10):4076-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Jun 25;14(6):209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23805896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Sep 21;6:33696</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27650273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Aug 29;7(1):9604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28851878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):281-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2016 Apr;90(6):575-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26729479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Sep;77(17):5934-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:807-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23373698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Feb 15;288(7):4502-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23293028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2004;42:243-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15283667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 2;488(7409):86-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Oct;10(10):999-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23995388</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Veach, Allison M" sort="Veach, Allison M" uniqKey="Veach A" first="Allison M" last="Veach">Allison M. Veach</name>
</noRegion>
<name sortKey="Cregger, Melissa A" sort="Cregger, Melissa A" uniqKey="Cregger M" first="Melissa A" last="Cregger">Melissa A. Cregger</name>
<name sortKey="Engle, Nancy L" sort="Engle, Nancy L" uniqKey="Engle N" first="Nancy L" last="Engle">Nancy L. Engle</name>
<name sortKey="Morris, Reese" sort="Morris, Reese" uniqKey="Morris R" first="Reese" last="Morris">Reese Morris</name>
<name sortKey="Schadt, Christopher W" sort="Schadt, Christopher W" uniqKey="Schadt C" first="Christopher W" last="Schadt">Christopher W. Schadt</name>
<name sortKey="Schadt, Christopher W" sort="Schadt, Christopher W" uniqKey="Schadt C" first="Christopher W" last="Schadt">Christopher W. Schadt</name>
<name sortKey="Tschaplinski, Timothy J" sort="Tschaplinski, Timothy J" uniqKey="Tschaplinski T" first="Timothy J" last="Tschaplinski">Timothy J. Tschaplinski</name>
<name sortKey="Yang, Zamin K" sort="Yang, Zamin K" uniqKey="Yang Z" first="Zamin K" last="Yang">Zamin K. Yang</name>
<name sortKey="Yip, Daniel Z" sort="Yip, Daniel Z" uniqKey="Yip D" first="Daniel Z" last="Yip">Daniel Z. Yip</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000727 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000727 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31103040
   |texte=   Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31103040" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020